## Reducing Type 1 and Type 2 Errors

Jeffrey Michael Franc MD, FCFP.EM, Dip Sport Med, EMDM

Medical Director, E/D Management Alberta Health Services

Associate Clinical Professor of Emergency Medicine University of Alberta

Visiting Professor in Disaster Medicine Universita' Degli Studi del Piemonte Orientale

## Objectives

- 1.Understand the principles of deciding on a sample size to reduce Type 1 and Type 2 errors
- 2.Understand the impact of multiple hypothesis testing on type-1 risk

## Quiz: Question 1

Our researcher wishes to calculate the appropriate sample size to ensure that the study has enough power to capture a significant difference.

Which of the following is a possible solution? (You can choose more than one)

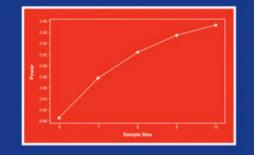
## Quiz: Options

A.Use 30 days

- B.Do a power based calculation of sample size
- C.Use as big of a sample as possible
- D.Consult a statistician
- E.Calculate sample size using a web based service
- F.Use tables of sample size
- G.Do a small pilot study and calculate sample size after

## Quiz: Question 2

The researcher decides that in order to optimize his time, he will test all the flavors of gelato with his additive.


Is this a good idea? Why or why not?

## Sample Size



Wiley Series in Probability and Statistics

Sample Size Determination and Power



Thomas P. Ryan

WILEY

## Sample Size

How do we select the sample size?

- 1.As big as you can get
  - The whole population
  - Pre-imposed limits
- 2.Choose 30
- 3. Power calculation
  - using "generic" effect sizes
  - using variance

## Whole Population

Give some examples of when we will examine the whole population:

## Whole Population

Give some examples of when we will examine the whole population:

 A researcher wants to examine the success of a course in ultrasound on the ability of residents to detect free fluid. The course will be offered to all residents in the Emergency Medicine Program

#### Pre-imposed Limits

Give an example when pre-imposed limits determine the sample size:

#### Pre-imposed Limits

Give an example when pre-imposed limits determine the sample size:

• A study is being done on a new experimental ventilator for ICU patients. The manufacturer will allow the ICU to use the ventilator for only 48 hours.

#### Just Use 30

When you have no information about the population, researchers will often start with 30 subjects. Why?

#### Central Limit Theorum

When a mean of 30 observations is used, its distributions approaches the Normal (Gaussian Curve) even if the actual population is nonnormal.

(Just makes the statistics easy)

## **Power Calculation**

#### Who has done this?

Was it easy?

#### Power Calculation

Steps to find sample size with power:

- 1. Specify hypothesis and test
- 2. Specify the significance ( $\alpha$ )
- 3. Specify and effect size that is of *scientific* interest
  - Obtain historical values or estimates of other parameters (usually  $\sigma) \, {}^{**}$
  - "Generic" effect size
- 4. Specify a target power
- 5.Calculate

# Sample Size Calculation for the Gelato Experiment





## 1: Specify Hypothesis and Test

 $H_0: \ (\mu_1 = \mu_2$  ) True daily mean chocolate sales are equal with and without additive.

H<sub>A</sub>:  $(\mu_1 \neq \mu_2)$  True daily mean chocolate sales are not equal.

Test statistic:  $\bar{X}_2 - \bar{X}_1 = \frac{\sum X_2}{n_2} - \frac{\sum X_1}{n_1}$ 

(Test is two-sample t-test)

## 2: Specify Level of Significance

 $\alpha = 0.05$ 

Probability of committing type 1 error

(The researcher accepts that if the null hypothesis is true, there is about a 5% chance of actually rejecting it)

#### 3: Calculate Effect Size

Who has been asked to calculate an effect size?

## 3: Effect Size

- Effect size: Estimated magnitude of the relationship
- This is a scientific (not statistical) question
- Unfortunately involves several unknown quantities

$$\tilde{\theta} = \frac{(\mu_2 - \mu_1)}{\sigma}$$

### 3: Effect Size

How do we determine  $\mu_2$  ?

This is *scientific* question.

What degree of change in the mean is practically (clinically) relevant?

## 3: Effect Size

- How do we determine  $\sigma$  ?
- -Previous research
- -Pilot study
- -Estimate from max and min
  - (generally range =  $6\sigma$ )

## 3: Effect Size for Gelato Experiment

The researcher feels that an increase of at least 4 scoops per day would warrant retooling of the factory

The owner is pretty sure that the range of scoops sold is always between 15 and 45.  $(6\sigma=30)$ 

 $\tilde{\theta} = \frac{(34 - 30)}{-} = 0.8$ 

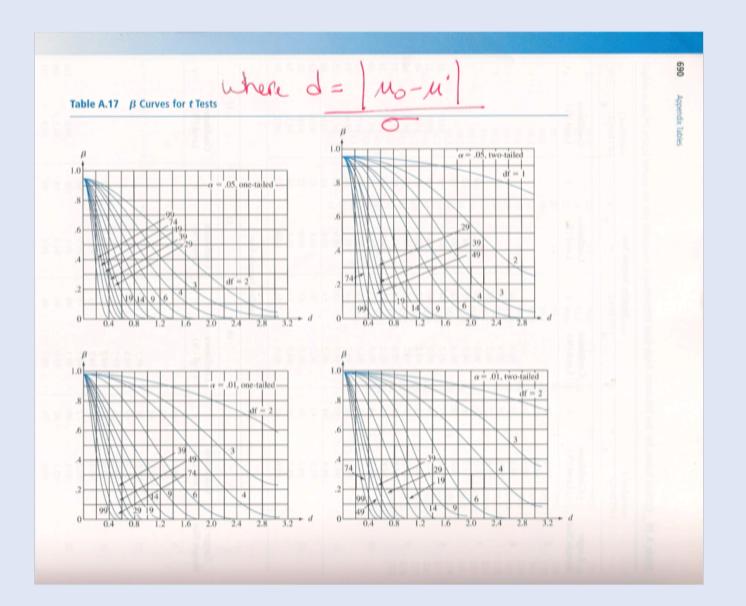
## 3: Generic Effect for Gelato Experiment

|                                                            |                                                                | Effect size |        |       |
|------------------------------------------------------------|----------------------------------------------------------------|-------------|--------|-------|
| Test                                                       | ES index                                                       | Small       | Medium | Large |
| 1. $m_A$ vs. $m_B$ for<br>independent<br>means             | $d=\frac{m_{A}-m_{B}}{\sigma}$                                 | .20         | .50    | .80   |
| 2. Significance<br>of product-<br>moment r                 | r                                                              | .10         | .30    | .50   |
| 3. $r_A$ vs. $r_B$ for<br>independent<br>$r_S$             | $q = z_A - z_B$ where $z =$ Fisher's $z$                       | .10         | .30    | .50   |
| 4. $P = .5$ and<br>the sign test                           | g=P50                                                          | .05         | .15    | .25   |
| 5. $P_A$ vs. $P_B$ for<br>independent<br>proportions       | $h = \phi_A - \phi_B$ where $\phi$ = arcsine transformation    | .20         | .50    | .80   |
| 6. Chi-square<br>for goodness<br>of fit and<br>contingency | $w = \sqrt{\sum_{i=1}^{k} \frac{(P_{1i} - P_{0i})^2}{P_{0i}}}$ | .10         | .30    | .50   |
| 7. One-way<br>analysis of<br>variance                      | $f = \frac{\sigma_m}{\sigma}$                                  | .10         | .25    | .40   |
| 8. Multiple and<br>multiple<br>partial<br>correlation      | $f^2 = \frac{R^2}{1-R^2}$                                      | .02         | .15    | .35   |

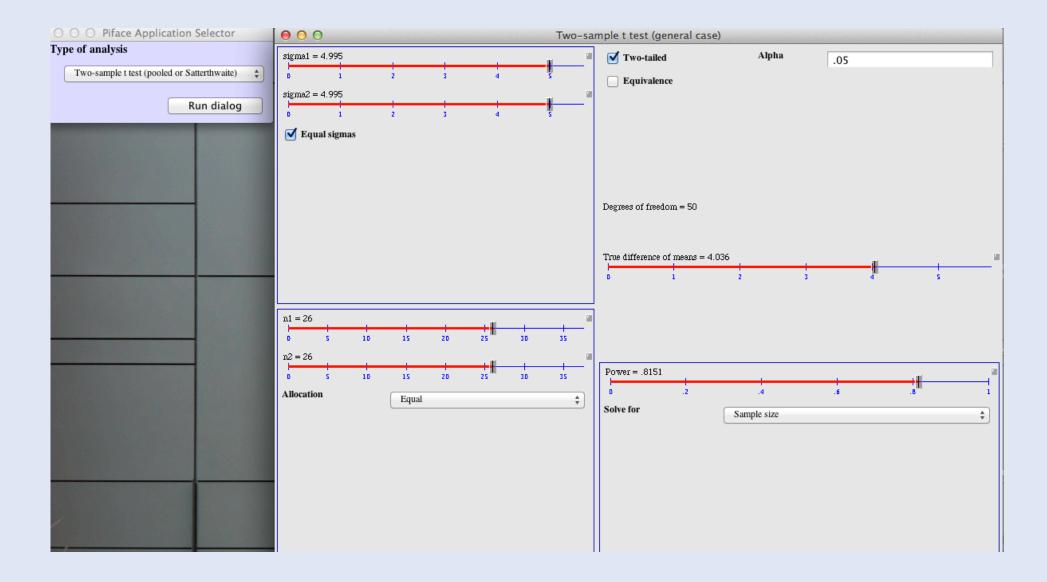
*Note.* ES = population effect size.

## 4: Specify Target Power

- $\beta=0.2$  Power=0.8
- Researcher accepts the risk that if the CHOSEN alternative hypothesis were true, there would be about an 80% chance of detecting it.
- Usually power of 80% is chosen
- Balance of adequate power with manageable sample size


# 5. Making the Calculation: Tables

|                  | α     |     |    |       |     |    |       |     |    |
|------------------|-------|-----|----|-------|-----|----|-------|-----|----|
|                  | .01   |     |    | .05   |     |    | .10   |     |    |
| Test             | Sm    | Med | Lg | Sm    | Med | Lg | Sm    | Med | Lg |
| 1. Mean dif      | 586   | 95  | 38 | 393   | 64  | 26 | 310   | 50  | 20 |
| 2. Sig <i>r</i>  | 1,163 | 125 | 41 | 783   | 85  | 28 | 617   | 68  | 22 |
| 3. <i>r</i> dif  | 2,339 | 263 | 96 | 1,573 | 177 | 66 | 1,240 | 140 | 52 |
| 4. $P = .5$      | 1,165 | 127 | 44 | 783   | 85  | 30 | 616   | 67  | 23 |
| 5. <i>P</i> dif  | 584   | 93  | 36 | 392   | 63  | 25 | 309   | 49  | 19 |
| 6. $\chi^{2}$    |       |     |    |       |     |    |       |     |    |
| 1 <i>df</i>      | 1,168 | 130 | 38 | 785   | 87  | 26 | 618   | 69  | 25 |
| 2df              | 1,388 | 154 | 56 | 964   | 107 | 39 | 771   | 86  | 31 |
| 3df              | 1,546 | 172 | 62 | 1,090 | 121 | 44 | 880   | 98  | 35 |
| 4df              | 1,675 | 186 | 67 | 1,194 | 133 | 48 | 968   | 108 | 39 |
| 5df              | 1,787 | 199 | 71 | 1,293 | 143 | 51 | 1,045 | 116 | 42 |
| 6 <i>df</i>      | 1,887 | 210 | 75 | 1,362 | 151 | 54 | 1,113 | 124 | 45 |
| 7. ANOVA         |       |     |    |       |     |    |       |     |    |
| $2g^a$           | 586   | 95  | 38 | 393   | 64  | 26 | 310   | 50  | 20 |
| $3g^a$           | 464   | 76  | 30 | 322   | 52  | 21 | 258   | 41  | 17 |
| $4g^a$           | 388   | 63  | 25 | 274   | 45  | 18 | 221   | 36  | 15 |
| 5gª              | 336   | 55  | 22 | 240   | 39  | 16 | 193   | 32  | 13 |
| $6g^a$           | 299   | 49  | 20 | 215   | 35  | 14 | 174   | 28  | 12 |
| $7g^a$           | 271   | 44  | 18 | 195   | 32  | 13 | 159   | 26  | 11 |
| 8. Mult <i>R</i> |       |     |    |       |     |    |       |     |    |
| $2k^b$           | 698   | 97  | 45 | 481   | 67  | 30 |       |     |    |
| $3k^b$           | 780   | 108 | 50 | 547   | 76  | 34 |       |     |    |
| $4k^b$           | 841   | 118 | 55 | 599   | 84  | 38 |       |     |    |
| $5k^b$           | 901   | 126 | 59 | 645   | 91  | 42 |       |     |    |
| $6k^b$           | 953   | 134 | 63 | 686   | 97  | 45 |       |     |    |
| $7k^b$           | 998   | 141 | 66 | 726   | 102 | 48 |       |     |    |
| $8k^b$           | 1,039 | 147 | 69 | 757   | 107 | 50 |       |     |    |


*Note.* ES = population effect size, Sm = small, Med = medium, Lg = large, diff = difference, ANOVA = analysis of variance. Tests numbered as in Table 1.

<sup>a</sup> Number of groups. <sup>b</sup> Number of independent variables.

## Making the Calculation: ROC



## 5: Making the Calculation: Software



### Summary: Sample Size

I receive quite a few questions that start with something like this: "I'm not much of a stats person, but I tried [details...] -- am I doing it right?"

Please compare this with: "I don't know much about heart surgery, but my wife is suffering from ... and I plan to operate ... can you advise me?"

(Russ Lenth, 2006)

## Sample Size Calculation

Questions?

# Multiple Hypothesis Testing



#### Multiple Hypothesis Testing

When the boss is away…our researcher decides that he will add the flavor supplement to ALL flavors.

He will test the same hypothesis on each of the flavors.

# Gelato Experiment

|    | Flavor              | Test Result (α=0.05) |
|----|---------------------|----------------------|
| 1  | Chocolate           | Rejected             |
| 2  | French Vanilla      | Rejected             |
| 3  | Chocolate Chip      | Not Rejected         |
| 4  | Peanut Butter Cup   | Not Rejected         |
| 5  | Raspberry           | Not Rejected         |
| 6  | Banana              | Not Rejected         |
| 7  | Butter Pecan        | Not Rejected         |
| 8  | Cherry              | Not Rejected         |
| 9  | Strawberry          | Rejected             |
| 10 | Mint                | Not Rejected         |
| 11 | Cookie Dough        | Not Rejected         |
| 12 | Neapolitan          | Not Rejected         |
| 13 | Cookies and Cream   | Not Rejected         |
| 14 | M & M               | Not Rejected         |
| 15 | Pistachio           | Not Rejected         |
| 16 | Mint Chocolate Chip | Not Rejected         |
| 17 | Chocolate Almond    | Not Rejected         |
| 18 | Lemon               | Not Rejected         |
| 19 | Caramel             | Not Rejected         |
| 20 | Coffee              | Not Rejected         |

## Quiz

|    | Flavor              | Test Result (α=0.05) |
|----|---------------------|----------------------|
| 1  | Chocolate           | Rejected             |
| 2  | French Vanilla      | Rejected             |
| 3  | Chocolate C to      | Not Rejected         |
| 4  | Peanut Butter Sp    | Not Rejected         |
| 5  | Raspberry           | Not Rejected         |
| 6  | Banana              | Not Rejected         |
| 7  | Butter Pecan        | Not Rejected         |
| 8  | Cherry              | Nu Pejected          |
| 9  | Strawberry C2       | Rejecter             |
| 10 | Mint                | Not Reject           |
| 11 | Cookie Dough        | Not Rejected         |
| 12 | Neapolitan          | Not Pencted          |
| 13 | Cookies and Cream   | Not Rejeated         |
| 14 | M & M               | Not Rejecte          |
| 15 | Pistachio           | Not Rejected 🕗 🔉 💙 🐊 |
| 16 | Mint Chocolate Chip | Not Rejected         |
| 17 | Chocolate Almond    | Not Rejected         |
| 18 | Lemon               | Not Rejected         |
| 19 | Caramel             | Not Rejected         |
| 20 | Coffee              | Not Rejected         |

#### Multiple Hypothesis Tests



Chance of 'Winning': 5/6 (83%)

Chance of an error: 1/6 (17%)

## Multiple Hypothesis Tests

Who wants to pull the trigger 6 times?

#### Multiple Hypothesis Tests

Who wants to pull the trigger 6 times?

# $P(survival) = \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} = 33\%$

Chance of an error is 77%

#### Multiple Hypothesis Tests

What is the probability of rejecting one or more hypothesis just by chance?

|    | Flavor              | Test Result (α=0.05) |
|----|---------------------|----------------------|
| 1  | Chocolate           | Rejected             |
| 2  | French Vanilla      | Rejected             |
| 3  | Chocolate Chip      | Not Rejected         |
| 4  | Peanut Butter Cup   | Not Rejected         |
| 5  | Raspberry           | Not Rejected         |
| 6  | Banana              | Not Rejected         |
| 7  | Butter Pecan        | Not Rejected         |
| 8  | Cherry              | Not Rejected         |
| 9  | Strawberry          | Rejected             |
| 10 | Mint                | Not Rejected         |
| 11 | Cookie Dough        | Not Rejected         |
| 12 | Neapolitan          | Not Rejected         |
| 13 | Cookies and Cream   | Not Rejected         |
| 14 | M & M               | Not Rejected         |
| 15 | Pistachio           | Not Rejected         |
| 16 | Mint Chocolate Chip | Not Rejected         |
| 17 | Chocolate Almond    | Not Rejected         |
| 18 | Lemon               | Not Rejected         |
| 19 | Caramel             | Not Rejected         |
| 20 | Coffee              | Not Rejected         |

## Experiment Wide Risk of Type I Error

# $P(\alpha) = 1 - 0.95^{20} = 0.64$

There is a 64% of rejecting at least one hypothesis just by chance

#### Gelato Experiment

Our researcher goes to his boss with paper in hand.

The boss states: "With all those significance tests, there it is likely you committed a type I error"

# Gelato Experiment

#### What can our researcher do?

## What Can You Do?



#### Multiple Hypothesis Testing

MAXIM: Testing multiple hypotheses in a single experiment requires careful planning from the start

# Multiple Hypotheses

Methods to correct for multiple hypotheses

- 1. Bonferroni Correction \*\*
- 2. Tests for multiple hypotheses:
  - Contingency Tables ( $\chi^2$  test)
  - Linear Regression (ANOVA) \*\*
- 3. Tukey-Kramer
- 4. Sheffe Method
- 5. Dunnett's Test
- 6. Duncan's New Range Test

#### **Bonferroni** Correction

Corrects the alpha value for individual tests to control for experiment wide error.

This means it is much harder to reject the null hypothesis!!!

 $p_i < \frac{\alpha}{m}$ 

 $p_i < \frac{0.05}{20}$ 

 $p_i < 0.0025$ 

# Gelato Experiment

|    | Flavor              | Test Result<br>(α=0.05) | p-value |  |  |  |  |  |
|----|---------------------|-------------------------|---------|--|--|--|--|--|
| 1  | Chocolate           | Rejected                | 0.01    |  |  |  |  |  |
| 2  | French Vanilla      | Rejected                | 0.01    |  |  |  |  |  |
| 3  | Chocolate Chip      | Not Rejected            | >0.05   |  |  |  |  |  |
| 4  | Peanut Butter Cup   | Not Rejected            | >0.05   |  |  |  |  |  |
| 5  | Raspberry           | Not Rejected            | >0.05   |  |  |  |  |  |
| 6  | Banana              | Not Rejected            | >0.05   |  |  |  |  |  |
| 7  | Butter Pecan        | Not Rejected            | >0.05   |  |  |  |  |  |
| 8  | Cherry              | Not Rejected            | >0.05   |  |  |  |  |  |
| 9  | Strawberry          | Rejected                | 0.03    |  |  |  |  |  |
| 10 | Mint                | Not Rejected            | >0.05   |  |  |  |  |  |
| 11 | Cookie Dough        | Not Rejected            | >0.05   |  |  |  |  |  |
| 12 | Neapolitan          | Not Rejected            | >0.05   |  |  |  |  |  |
| 13 | Cookies and Cream   | Not Rejected            | >0.05   |  |  |  |  |  |
| 14 | M & M               | Not Rejected            | >0.05   |  |  |  |  |  |
| 15 | Pistachio           | Not Rejected            | >0.05   |  |  |  |  |  |
| 16 | Mint Chocolate Chip | Not Rejected            | >0.05   |  |  |  |  |  |
| 17 | Chocolate Almond    | Not Rejected            | >0.05   |  |  |  |  |  |
| 18 | Lemon               | Not Rejected            | >0.05   |  |  |  |  |  |
| 19 | Caramel             | Not Rejected            | >0.05   |  |  |  |  |  |
| 20 | Coffee              | Not Rejected            | >0.05   |  |  |  |  |  |

# Contingency Tables (Chi Square Test)

table(Y\$correct,Y\$operator);

|       | C1 | C10 | C2 | С3 | C4 | C5 | С6 | С7 | С8 | С9 | S1 | S10 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 |  |
|-------|----|-----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|--|
| FALSE | 2  | 3   | 3  | 1  | 3  | 0  | 2  | 2  | 2  | 2  | 1  | 2   | 2  | 1  | 4  | 2  | 1  | 5  | 2  | 5  |  |
| TRUE  | 7  | 6   | 6  | 8  | 6  | 9  | 7  | 7  | 7  | 7  | 8  | 7   | 7  | 8  | 5  | 7  | 8  | 4  | 7  | 4  |  |

> chisq.test(table(Y\$correct,Y\$operator));
 Pearson's Chi-squared test
data: table(Y\$correct, Y\$operator)
X-squared = 18.8148, df = 19, p-value = 0.4688

#### ANOVA

>summary(aov(time~operator,data=Y));

Df Sum Sq Mean Sq F value Pr(>F) operator 19 556474 29288 51.14 <2e-16 \*\*\* Residuals 160 91635 573 ---Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' 1

# Multiple Hypothesis Testing

**Questions**?

# Quiz: Options

- A.Use 30 samples
- B.Do a power based calculation of sample size✔
- C.As big of a sample as possible
- D.Consult a statistician
- E.Calculate sample size using a web based service
- F.Use tables of sample size
- G.Do a small pilot study and calculate sample size after

# Quiz: Question 2

Multiple significance tests:

- Consider carefully pros and cons
- Plan methodology carefully at onset
- Expect to sacrifice power

# Objectives

- 1.Understand the principles of deciding on a sample size to reduce Type 1 and Type 2 errors
- 2.Understand the impact of multiple hypothesis testing on type-1 risk

## Math Lesson (Optional)

What is the potential problem with using the "generic" effect sizes.