Multivariate Analysis

Jeffrey Michael Franc MD, MSc, FCFP.EM, Dip Sport Med, EMDM

> Medical Director, E/D Management Alberta Health Services

Assistant Clinical Professor of Emergency Medicine University of Alberta

Visiting Professor in Disaster Medicine Universita' Degli Studi del Piemonte Orientale

Objectives

- Demonstrate the use of an appropriate statistical test for multivariate hypothesis testing including Chi Square test, t-tests, and the correlation coefficient.
- Understand the role of logistic regression, ANOVA, and linear regression.

Hypothesis Testing

- 1. Identify parameter of interest
- 2.Determine null and alternative hypothesis
- 3.Define the test statistic***
- 4. State rejection region
- 5.Calculate test statistic
- 6.Decide if H_0 will be rejected
- 7.State conclusion in context

Quiz

Methodology of Research in Emergency and Disaster Medicine Quiz 7

Multivariate Hypothesis Testing

For the following scenarios, indicate which would be the best test statistic.

- A. Chi-Square Test
- B. Logistic Regression
- C. Paired t-test
- D. Two Sample t-test
- E. ANOVA
- F. Wilcoxen Rank Sum Test (Mann Whitney Test)
- G. Linear Regression
- H. Correlation Coefficient

A researcher is investigating the accuracy of triage code assignment with two triage systems (CTAS and START). 90 patient cases were evaluate by each system. Among the CTAS group, 70 were correct. Among the START group, 65 were correct.

- 1. Parameter of interest:
 - ???

- 1. Parameter of interest:
 - P_s and P_c (proportion correct)

- 1. Parameter of interest:
 - P_s and P_c (proportion correct)
- 2.Determine null and alternative hypothesis
 - ????

- 1. Parameter of interest:
 - P_s and P_c (proportion correct)
- 2.Determine null and alternative hypothesis
 - $H_0: P_s = P_c$
 - $H_{A}: P_{S} \neq P_{C}$
- 4. State Rejection Region
 - α=0.05
 - Reject if p<0.05

3. Define the test statistic

3. Define the test statistic Multivariate Discrete Response Discrete Factors Chi-Square Test

5. Calculate the test statistic

🖲 Epi Info 7 - Analysis												
File View Tools Help												
Command Explorer	P	Output: outpu	t3.html									
🖃 🗁 Analysis Commands	^		Novt No	act 🚇 Hict	ory []]Op	en 🔶 Bookmark 🛛 🛶 Drint	1					
🖨 🗁 Data		Previous	Mext Pr	ast 🌚 Hist								
Read		METHOD	FALSE	TRUE	Total					<u> </u>		
Relate		ctas	20	70	90							
Write (Export)		Dorr04	22.2204	77 70%	100.00%							
Delete File /Table		100/10	22.2270	11.1070	100.0070							
		Col%	44.44%	51.85%	50.00%							
Indelete Records		start	25	65	90							
Sindebles		Row%	27 78%	72.22%	100 00%							
🔄 🔄 Define		C - 10/	55 5 604	40 1504	50.0004							
📄 DefineGroup		C0170	55.5676	46.1070	50.0076							
🗐 Undefine		TOTAL	45	135	180							
🗐 Assign		Row%	25.00%	75.00%	100.00%							
🗐 Recode	=	Co1%	100.00%	100.00%	100.00%							
📖 🚉 Display		001/0	100.0070	100.0070	100.0070							
🖻 🗁 Select/If												
Select		Single Table Analysis										
Cancel Select												
		Point 95% Confidence Interval										
Sort							Estimate	Lower	Upper			
Caricel Solt					DARA	METERS: Odde-based						
interest								0 2221	1 4 6 2 4			
					Udas.	Katio (cross product)	0.7429	0.3771	1.4634 (T)			
					Odds I	Ratio (MLE)	0.7441	0.3736	1.4703 (M)			
Means								0.3549	1.5443 (F)			
					PARA	METERS: Risk-based						
🔄 🗐 Graph					Risk R	atio (RR)	0 8000	0 4803	1 3326 (т)			
🖃 🗁 Advanced Statistics					Diale D	ifforence (PD04)	5 5556	10 1010	7.0701 (T)			
🗐 Linear Regression					LISK L	merence (RD 20)	-5.5550	-10.1012	7.0701 (1)			
📄 Logistic Regression		(T=Taylor series; C=Cornfield; M=Mid-P; F=Fisher Exact)										
— 🗐 Kaplan-Meier Survival					STAT	ISTICAL TESTS	Chi-square	1-tailed p	2-tailed p			
Cox Proportional Hazards					Chi-so	uare - uncorrected	0 7407	-	0 3894244097			
Complex Sample Frequencies					C11-54		0.7266		0.2007447075			
Complex Sample Tables					Oni-sq	uare - Iviantei-Haenszel	0.7500		0.5907447075			
Complex Sample Means					Chi-sq	uare - corrected (Yates) 0.4741		0.4911194455			
					Mid-p	exact		0.1982692015				
	~				Fisher	exact		0 2456939488	0 4913878977	N		

The overall triage accuracy was 77% for the CTAS group and 72% for the START group. The null hypothesis of no difference between triage accuracy was not rejected as there was no significant statistical difference (p>0.3).

- A researcher wishes to develop a prediction model for admission to hospital related to 8 variables:
 - 1. Age
 - 2. Gender
 - 3. CTAS Triage Score
 - 4. Pulse
 - 5. Respiratory Rate
 - 6. GCS
 - 7. Systolic BP
 - 8. Mode of arrival (Ambulance or not)

1. Parameter of interest

- 1. Parameter of interest
 - Y=admission yes/no
 - x_i='factors'
 - $Y = \beta_0 + \beta_1 x_1 + \beta_2 \beta x^2 + \beta_3 x_3 + \beta_4 x_4 \dots$

- 1. Parameter of interest
 - Y=admission yes/no
 - x_i='factors'
 - $Y = \beta_0 + \beta_1 x_1 + \beta_2 \beta x^2 + \beta_3 x_3 + \beta_4 x_4 \dots$
- 2.Null and Alternative Hypotheses

- 1. Parameter of interest
 - Y=admission yes/no
 - x_i='factors'
 - $Y = \beta_0 + \beta_1 x_1 + \beta_2 \beta x^2 + \beta_3 x_3 + \beta_4 x_4 \dots$
- 2.Null and Alternative Hypotheses

•
$$H_0$$
: all $\beta_i = 0$

• H_A : At least one $\beta_i \neq 0$

3. Choose Test Statistic

Choosing a Test Statistic

3. Choose Test Statistic

Multivariate Discrete Response tinuous Continuous Discrete Factors Factors mall Sample Normal distribution or Large Sample Non-Normal ngle Factor with Non-Paired Paired Logistic Regression lcoxen Rank -Two Sample t-Tes

- 4. Rejection Region
 - Use alpha =0.05
 - Reject if p<0.006 WHY???

- 4. Rejection Region
 - Use alpha =0.05
 - Reject if p<0.006


```
Call:
glm(formula = Admitted ~ Age + Sex + CTAS + Pulse + Resp + GCS +
   Systolic + Ambulance, family = binomial(link = "logit"),
   data = na.omit(admit))
Deviance Residuals:
            10 Median 30
   Min
                                    Max
-1.8464 -0.6494 -0.3966 -0.2054 2.7613
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.362313 1.881715 -0.724 0.46908
         0.029226 0.005678 5.147 2.65e-07 ***
Aqe
SexM
          0.539982 0.233519 2.312 0.02076 *
       -0.470511 0.174033 -2.704 0.00686 **
CTAS
Pulse 0.003543 0.006536 0.542 0.58778
Resp 0.079825 0.032836 2.431 0.01506 *
         -0.133719 0.109911 -1.217 0.22375
GCS
Systolic -0.005160 0.005627 -0.917 0.35915
Ambulance1 1.239053 0.246058 5.036 4.76e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 617.2 on 565 degrees of freedom
Residual deviance: 485.6 on 557 degrees of freedom
AIC: 503.6
Number of Fisher Scoring iterations: 5
```

- 6. Decide if null hypothesis
 rejected:
- REJECT

7.State Conclusion in Context

Need for admission appears to be correlated with age and arrival by ambulance.

A researcher is investigating the impact of a new disaster medicine curriculum. The researcher has pre and post-test scores for 12 students.

- 1. Parameter of Interest
 - μ_D where D=X-Y
 - (Difference between pre and post test score for each student)
- 2.Determine Null and Alternative Hypotheses
 - $H_0: \mu_D=0$
 - H_A: μD≠0
- 4. State Rejection Region
 - α=0.05
 - Reject if p<0.05

3. Define the test statistic

DM Curriculum

Is this normal?

Normal Probability Plot Pretest Scores

Is this Paired?

We are again interested in testing hypotheses about the difference $\mu_1 - \mu_2$. The denominator of the two-sample *t* test was obtained by assuming independent samples and applying the rule $V(\overline{X} - \overline{Y}) = V(\overline{X}) + V(\overline{Y})$. However, with paired data, the *X* and *Y* observations within each pair are often not independent, so \overline{X} and \overline{Y} are not independent of one another. We must therefore abandon the two-sample *t* test and look for an alternative method of analysis.

DM Curriculum

3. Define the test statistic

Multivariate

Continuous Response

Discrete Factors

Single factor with 2-levels ↓

Large Sample

 $\mathbf{\Psi}$

 \mathbf{V}

Paired

5. Calculate Test Statistic

● ● ● ● *R*									
- 🗅 🗁 🚍 🗙 🔚 🥱 🐰 🛅 🛅 💽									
<pre>> t.test(posttest.scores,pretest.scores,paired=TRUE);</pre>									
Paired t-test									
<pre>data: posttest.scores and pretest.scores t = 3.8287, df = 11, p-value = 0.002801 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 2.273296 8.421148 sample estimates: mean of the differences 5.347222</pre>									
	-								
-:**- *K* BOT L3016 (1ESS [K]: run ELDOC)									
t: x=									

7. State conclusion in context.

There was a significant improvement in test scores after the curriculum (p<0.003). The mean improvement in test score was 5.3 points (95% confidence interval: 2.3 to 8.4).

A researcher measured satisfaction with a new DM curriculum by means of a survey. The survey was administered to third year residents prior to the introduction of the new curriculum and then to the next years third year residents after the curriculum.

The researcher wants to show that the overall satisfaction has increased.

- 1. Parameter of interest
 - ???

- 1. Parameter of interest
 - μ_{pre} and μ_{post}
- 1. Parameter of interest
 - μ_{pre} and μ_{post}
- 2.Null and Alternative Hypotheses
 - ??????

- 1. Parameter of interest
 - μ_{pre} and μ_{post}

2.Null and Alternative Hypotheses

- $H_0: \mu_{pre} = \mu_{post}$
- H_A : $\mu_{pre} \neq \mu_{post}$

- 1. Parameter of interest
 - μ_{pre} and μ_{post}

2.Null and Alternative Hypotheses

- $H_0: \mu_{pre} = \mu_{post}$
- H_{A} : $\mu_{pre} \neq \mu_{post}$
- 3.Test Statistic
 - ??????

5. Calculate the test statistic

🖲 Epi Info 7 - Analysis			
File View Tools Help	100		
Command Explorer 4	Output: output7.html		
🖃 🧁 Analysis Commands 🛛 🔥 🔨			
🖨 🦢 Data			
🛄 Read			
- 🔄 Relate	MEANS Satisfaction [Group]		
Write (Export)	MLANS Satisfaction [Group]		
🔄 Merge			
Delete File/Table			
Delete Hecords	Descriptive Statistics for Each Value of Crosstab Variable		
Undelete Records	Oha Tatal Maan Varianaa Std Day		
Variables		Commence of the second s	
Define	Post 21.0000 110.0000 5.2381 0.8905 0.9437	el Epi Info 7 - Analysis	
	Pre 20.0000 65.0000 3.2500 1.2500 1.1180	File View Tools Help	
	Minimum 25% Median 75% Maximum Mode	Command Evolorer A	
Assign	Post 4,0000 5,0000 5,0000 7,0000 5,0000	🗆 🗁 Analusia Commanda	Uutput:output/.html
E Recode	Post 4.0000 5.0000 4.0000 7.0000 5.0000	Analysis Commands	🗧 < Previous 🌔 Next 🕪 Last 🧶 History 🛛 💭 Open 🖕 Bookmark 🛛 🚔 Print
Coloct //	Pre 1.0000 2.0000 4.0000 5.0000 4.0000	Bead	FORCE Equal 59 0.10 0.0000
		Belate	Satterthwaite Unequal 37.24 6.14 0.0000
G Cancel Select		Write (Export)	
	T-Test	Merge	
Sort		Delete File/Table	ANOVA a Parametric Test for Inequality of Population Means
G Cancel Sort	Materia Mara 050/ CL Mara Stabler	Delete Records	AlvovA, a l'arametric resi for inequanty of l'opulation Means
Statistics	Method Mean 95% CL Mean Std Dev	🔄 🛄 Undelete Records	
inter inter	Diff (Group 1 - Group 2) Pooled 1.9881 1.3357 2.6405 1.0323	🖃 🦢 Variables	(For normally distributed data only)
	Diff (Group 1 - Group 2) Satterthwaite 1.9881 1.3323 2.6439	🗎 Define	
Tables		🔜 DefineGroup	Variation SS df MS F statistic
Means	Method Variances DE t Value Pr > t	🔄 🗌 Undefine	Between 40.48926 1 40.48926 37.99565
Summarize		- 🔄 Assign	Within 41 55952 39 1 06563
📄 Granh	Pooled Equal 39 6.16 0.0000	Recode	T 1 00000
Advanced Statistics	Satterthwaite Unequal 37.24 6.14 0.0000	🗐 Display	10tal 82.04878 40
Linear Berression		E C Select/If	
		Select	P-value = 0.00000
Aplan-Meier Survival	ANOVA a Parametric Test for Inequality of Population Means	Cancel Select	
Cox Proportional Hazards	ANOVA, a l'alametric l'est loi inequanty of l'opulation Means		
Complex Sample Frequencies	ad a second s	Sort	Bartlett's Test for Inequality of Population Variances
📄 Complex Sample Tables 🛛 🗸	(For normally distributed data only)	Cancel Sort	Darnett's rest for inequality of ropalation variances
	۱۱ ـــــــــــــــــــــــــــــــــــ	Statistics	
Handreit Editor			Bartlett's chi square= 0.54529 dt=1 P value=0.46025
Ready	en-US 7.1.3.3 CAPS NUM INS 💥		
		Means	A small p-value (e.g., less than 0.05 suggests that the variances are not homogeneous and that the
		Summarize	ANOVA may not be appropriate.
		Graph	,
		Advanced Statistics	Mann Whitney/Wilcoven Two Sample Test (Kruskal Wallis test for two groups)
		Inear Berression	traun- minney/mincoxon 1wo-sample rest (Kruskar-mains test for two groups)
		Logistic Regression	
		📓 Kaplan-Meier Survival	Kruskal-Wallis H (equivalent to Chi square) = 22.5051
		Cox Proportional Hazards	Degrees of freedom = 1
		Complex Sample Frequencies	P value = 0.0000
		📕 🗌 Complex Sample Tables 🛛 🚽	
		- Deserver Erliter	ar

Read

en-US 7.1.3.3

NUM

7. State Conclusion in Context

 Median satisfaction score before the introduction of the curriculum was 4/7. Median satisfaction after the introduction of the curriculum was 5/7. We reject the null hypothesis of no difference, and conclude that resident satisfaction was significantly higher on after the introduction of the curriculum. (p<0.0001)

A researcher suspects that the emergency department shift workload is not equal across all shifts. To investigate this possibility, number of patients seen during each shift was tabulated for each of the 7 daily shifts for 1 week (49 shifts total).

H₀: All shifts have same volume

H_A: At least one of the shifts has different volume

 $\alpha = 0.05$

Test Statistic?

000	*R*
🗅 🗁 🚍 🗙 🛛] 🥱 💥 📭 🛅 🖻
>	
> Tulun (ICDCabi Ch. an	· A.
> Tukey multiple co	v); mnarisons of means
95% family-wise	confidence level
Fit: aov(formula =	total ~ as.factor(time), data = shift)
<pre>\$`as.factor(time)`</pre>	
diff	lwr upr padj
s09-s06 7.1428571	0.9623041 13.32341018 0.0143804
s12-s06 -1.5714286	-7.7519816 4.60912446 0.9850119
s14-s06 7.8571429	1.6765898 14.03769589 0.0052639
s18-s06 1.0000000	-5.1805530 7.18055303 0.9987114
S19-S06 17.0000000	10.81944/0 23.18055303 0.00000000
s24-500 15.4205/14 c12_c098 7142857	-14 8948387 -2 53373268 0 0014726
s14-s09 0.7142857	-5.4662673 6.89483875 0.9998130
s18-s09 -6.1428571	-12.3234102 0.03769589 0.0523439
s19-s09 9.8571429	3.6765898 16.03769589 0.0002480
s24-s09 6.2857143	0.1051613 12.46626732 0.0439440
s14-s12 9.4285714	3.2480184 15.60912446 0.0004880
s18-s12 2.5714286	-3.6091245 8.75198161 0.8535755
s19-s12 18.5714286	12.3908755 24.75198161 0.0000000
s24-s12 15.0000000	8.8194470 21.18055303 0.0000001
S18-S14 -0.85/1429 c10-c14 0 1428571	-13.03/0959 -0.0/058982 0.0211188
s19-s14 9.14203/1 s24-s14 5 5714286	-0 6091245 11 75198161 0 1014928
s19-s18 16.0000000	9.8194470 22.18055303 0.0000000
s24-s18 12.4285714	6.2480184 18.60912446 0.0000038
s24-s19 -3.5714286	-9.7519816 2.60912446 0.5626816
>	
-:**- *K*	BOT L4004 (1ESS [K]: run ELDOC)
menu-bur fille one-w	LINUOW

ANOVA does not show WHICH levels of the factor are different.

Need to use another procedure that compares each group to one another

Sometimes graphical methods are superior

Shifts #6 and #7 clearly see more patients than the others.

A researcher has completed a survey for a pilot study of a new commandand-control system for emergency departments. The researcher wonders which component of the tool is most important for customer satisfaction

2. Null and Alternative Hypothesis

- H₀: Overall satisfaction is unrelated to the 5 other components
- H_A : Overall satisfaction is related to at least one of the 5 components.

3. Define a test statistic

Only

Correlation

Coefficient

5. Calculate Test Statistic

000 *R* * 🖬 🛗 🗬 X 5 7 > iced.lm<-lm(F~J+K+L+M+N,data=iced.df);</pre> > summary(iced.lm); Call: $lm(formula = F \sim J + K + L + M + N, data = iced.df)$ Residuals: Min 10 Median 30 Max -2.32717 -0.34352 0.01455 0.46384 1.99984 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.61909 0.32141 1.926 0.05707 . 0.10643 5.036 2.25e-06 *** 1 0.53599 К 0.09327 0.10902 0.856 0.39441 0.25387 0.09437 2.690 0.00844 ** -0.14550 0.11003 -1.322 0.18923 м 0.16768 0.13207 1.270 0.20733 N Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.74 on 95 degrees of freedom (2 observations deleted due to missingness) Multiple R-squared: 0.7412, Adjusted R-squared: 0.7276 F-statistic: 54.42 on 5 and 95 DF, p-value: < 2.2e-16 > *R* Bot L5513 (iESS [R]: run ElDoc) _•**_

- 6. REJECT
- 7. State Conclusion in Context

Overall satisfaction with the ICED tool appears to be most correlated with satisfaction with the introductory text and the color coding.

A researcher believes that taking blood pressure at triage during a disaster is unnecessary. She wishes to show that pulse is highly correlated to blood pressure.

She has the Systolic Pressure and Pulse for 2223 emergency department visits

- 1. Parameter of Interest
 - Correlation coefficient p

- 2. Determine Null and Alternative Hypotheses
- $H_0: \rho=0$ (Population Correlation is zero) $H_{\Delta}: \rho\neq 0$

3. Define Test Statistic

Multivariate

J

J

Continuous Response

Continous Factors

Correlation only

Correlation Coefficient

The sample correlation coefficient: r

Note: $-1 \leq r \leq 1$

- -1 is perfect negative correlation
 - 0 is no linear correlation
 - 1 is perfect positive correlation

```
>
>
>
>
>
> cor.test(app.df$Systolic,app.df$Pulse);
        Pearson's product-moment correlation
data: app.df$Systolic and app.df$Pulse
t = 2.4954, df = 2221, p-value = 0.01265
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.01132735 0.09424316
sample estimates:
       cor
0.05287639
```

6. Decide if H0 will be rejected:

Reject ???

Always Plot !!!

7. State conclusion in context

The sample correlation coefficient r was 0.05 (95% confidence interval: 0.01 to 0.09), and thus the null hypothesis of no linear relationship is rejected. (p<0.02).

However, the magnitude of the linear correlation is minimal, and the ability to use pulse rate as an alternative to systolic blood pressure for triage purposes is suspect, and would require further study.

Objectives

- Demonstrate the use of an appropriate statistical test for multivariate hypothesis testing including Chi Square test, t-tests, and the correlation coefficient.
- Understand the role of logistic regression, ANOVA, and linear regression.

1. In a study of 14 students, seven were randomized to a disaster medicine training session and seven received only a reference textbook. Scores on a standardized disaster medicine exam given 6 months later appear below.

Training	25	25	50	75	100	100	100
Text Only	75	75	75	100	100	100	100

F_1. In a study of 14 students, seven were randomized to a disaster medicine training session and seven received only a reference textbook. Scores on a standardized disaster medicine exam given 6 months later appear below.

			2			-	
Training	25	25	50	75	100	100	100
Text Only	75	75	75	100	100	100	100

2. A researcher is studying the influence of patients gender on correct disaster triage. Of 100 males, 84 were triaged correctly. Of 130 females, only 65 were triaged correctly.

A_2. A researcher is studying the influence of patients gender on correct disaster triage. Of 100 males, 84 were triaged correctly. Of 130 females, only 65 were triaged correctly.

3. To study anxiety among first responders, 30 volunteers had their heart rates measured 10 minutes before and the again 10 minutes after a simulated disaster scenario.

C_3. To study anxiety among first responders, 30 volunteers had their heart rates measured 10 minutes before and the again 10 minutes after a simulated disaster scenario.

4. A researcher is attempting to develop a survival model for victims of a recent blast injury. The researcher wishes to predict survival versus no survival based on factors such as age, weight, gender, and proximity to the blast in the 120 victims.
Quiz Answer: #4

B 4. A researcher is attempting to develop a survival model for victims of a recent blast injury. The researcher wishes to predict survival versus no survival based on factors such as age, weight, gender, and proximity to the blast in the 120 victims.

Quiz Answer: #5

5. A researcher suspects that there is a strong relationship between blood carbon monoxide levels in victims of a building fire and the victims age. Data is available for 21 victims.

Quiz Answer: #5

H_5. A researcher suspects that there is a strong relationship between blood carbon monoxide levels in victims of a building fire and the victims age. Data is available for 21 victims.

Math Lesson

How to calculate a chi-square test